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Overview of this lecture

1 Weak coupling
Z Linearising the Hamiltonian
Z Optomechanical cooling
Z Lightzmechanics entanglement

1 Strong coupling
Z Non-Gaussian states
Z The optomechanical blockade

1 Quadratic coupling: Quantum nedemolition



The weak coupling regime
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1 During this part of the lecture, we will be concerned with a weak
- coupling between the optical and mechanical subsystems:

QL1

| ThIS IS the case with all current optical, and most microwave,
experiments ,

i Gomg beyond this limit makes calculations harder |



The weak coupling regime
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1 Let us recall the Interaction Hamiltonian
(¢} 0 @)D O

i This Hamiltonian is cubic in the operators

1 It is often desirable to have Hamiltonians that are quadratlc In the
operators



Digression: Quadratic Hamiltonians
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| In the Heisenberg picture of quantum mechanics, the equation of
- motion for an operatog is:
O[CJrIa

| In our case what the commutator often does is reduce the power of
operators

| In other words, IfOIs quadratic in the operator$/( | is often linear

| But if all the equations of motion are linear, we can use linear algebra
to solve them



Digression: Quadratic Hamiltonians
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Many guantum states can be represented uniquely by a covariance
matrix,, ' ‘

In such cases, the second moments encode all the information about
the state

For a single harmonic oscillator, , i

( (w) (W - —(anHu N <60><r‘wj
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When the Hamiltonian is quadratic, it is possible to derive a linear
equation of motion for, in terms of itself and constant coefficients



The weak coupling regime
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1 We seek a quadratic approximation to our Hamiltonian

i Define a unitary transformationY go® & | , wherg is some
complex number

I We get
O 230 I W
03 ‘& |



The weak coupling regime
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1 Next, define another transformatioflY ¢® & 1

1 We get A
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The weak coupling regime
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Now, we choose andT to cancel out the linear terms:

O, =ofe - HEn
o=P=ar -1 W

These equations ameonlineamwith a rich set of solutions

—

We also redefine the detuning: |
= )03

-1 In this representationohas no driving term, so that it is in the
vacuum state forQ Tt

—
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The weak coupling regime
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These transformatlons S|m|gllf~y our Hamlltonlan
0 930K 3 QW oW W)( ‘D | d)

2 Ww)OD o P T)lll

| Our task is to get rid of the terms in the second line

—

| These transformations also have an effect on the Liouvillian, but this
effect does not changeur argument

Y First, we note that the last term is a constant and so can be ignored

| Second, we can assume thats real by an appropriate definition of
the phase of the drivingeld



The weak coupling regime
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So now we have e e
0 9300 9 0w 30 Qd d)(w w)

For simplicity, defineO | Q

s
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We now assume that is very large, sothdt || p

i Becausd® @) mwhenQ T for smallenough’Q we can neglect
the last term



The weak coupling regime
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1 Our Hamlltoman reduces to a quadratlc one
(@) 0300 9 0w dd & )(o w)

I This is the starting point fmnanyoptomechanlcs papers

I Observe the symmetry between the optical and mechanical modes in
this system -



Optomechanical cooling | =

I Inthe mid@Y o d PO

letters to nature

Cavity cooling of a microlever
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Optomechanical cooling
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1 1 would like to show you how this cooling effect comes about

1 I\/Iy startlng point is the supemrrlplg linearisedHdamiltonian
O 0 30O 9 0w 2@ &) w)



Optomechanical cooling
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1 The equation of motion for the operataoreads:
G 'O QUG o) I ok

i The last term assures th@hd |  pat all times



Optomechanical cooling
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1. After a similar operation for the mechanical mode, we obtain:
@ (8 Ho QW &) gk

O R O G &) JToH
1 What we will do next is called adiabatic elimination

i We shall obtain an equation fasalone by eliminating



Optomechanical cooling
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1 For simplicity, we shall consider only the case ' L Il L T
1 This is often called the resolved sideband regime

A spectrum of the cavity field shows clearly two sidebands caused by
the oscillator



Optomechanical cooling
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Optomechanical cooling
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1 Letuschoose 1
i"AAE Ol OEA ANOAOEITO 1T &£ i1 OEIT 8
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I We may make several simplifications: '

Z Becausg¢ and"OCare small, we first solv@with™O | T
Z We then insert this solution itband solve the equation fab

Z Finally, we reinsert this solution intavand simplify



Optomechanical cooling
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First,
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This implies that

ey
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given by'Q which is very small) 5
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1 We will ignore the noise terms entirely, as these are irrelevant here



Optomechanical cooling
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1 Substituting, we get | s 2 3
o boo@ &0 6)E

1 Again, the noise terms do not concern us

I Sincewis slowly varying, we can treat it as a constant;.

~
=
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Optomechanical cooling
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1 Itis fairly easy to integrate this expression, obtaining

o v v 5 p v 5 =
QGB-Q Q =
6 offn o —fo o)

i Reintroducingwand usingl L 7 we find

S g e e
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Optomechanical cooling
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I Our next task is to insert this expression imo

I We obtain

e e e
o B SR e
1 T EONOIEAD O EEE Al & (o

I In the equation forowe are allowed to ignore terms like



Optomechanical cooling

1 Thus
5 0 o(l‘l’ ULQ>Q> 11 EOHTD

I We group real and imaginary parts:

RTETC e 11 o



Optomechanical cooling

1 What does this imp I ’7
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1 First, the oscillation frequency changes|to

I This is called the optical spring effect

07 q



Optomechanical cooling

What does this imply? '
7 BT O 7 5
s ) Pl ook

Second, the damping rate increases'to 'O/l
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The net rate of heat inpurom the supports unchanged

This means that the osclillator loses heat faster

-

1 In other words, the oscillator is cooled



Optomechanical cooling

1 What does this imply?

~
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1 Third, the noise terms pose limits to this cooling mechanism

I Why so? .
Z "Ogrows with. , so the stronger the driving, the stronger the cooling
Z However, the optical noise also grows with

Z Beyond a certain driving strength, the heating effects of the noise balance out
the cooling effects .



Optomechanical cooling
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[A. Schliessert al, Phys. Rev. LetB7, 243905 (2006)]



Optomechanical cooling
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| How can we understand this process?

i Think of the two harmonic oscillator ladders and stage&i O(&
photons,& phonons)

| By driving the caV|ty with a detuning 1 , we drive the
transiton€hx a° € ph  pd ,

A

| Photons leaking from the cavity take the systemgdn pQ

1 As I claimed in my first lecture, this is precisely how cooling in ion
traps works .



Entanglement '
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Consider, once again, the interaction term fro@

"0 0@ &) o)

i Whenz | ,we havemD'Q andwD Q
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This Hamiltonian gives rise to the cooling mechanism we have seen

OAO



Entanglement '
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i Whatifs 1 ?Then®D Q andwD Q

I Agam keeplng only slowly rotating terms:
0 0 "G D)

I This is a Hamiltonian familiar from nonlinear optics, and describes
the creation or annihilation aforrelated photaxphonon pairs



Entanglement '
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1 This Hamiltonian is known to produce entanglement, but how do we
check and quantify this?

I Consider the vector of first mom(e‘n§s
W
. (NHY
Y :
(@ )
(NHY
1 The dimensionless quadratures are : 2
(@)h —(&d ®)h Mh —(d d)h AGA
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Entanglement '

—

Bl 154

w—

—

e = - p——

From the master equation, Itis eaS|Iy seen that
Yer=0.1Y

We callb the drift matrix

From the same master equatlon one can show that
" O t " 7 t O U

Where, Is the covarlance__ matrix of the entire system ands a
AEACI T AI Ol T EOAo | AOOE®@

This equation is called the Lyapunov equation,for



Entanglement '
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I Under the right conditions,  1thas a unique solution,

1 From this, ,we may check for entanglement between light and
mechanics

| In fact, some algebraic manipulations,of give rise to a number,
called the logarithmic negativitD Tt

| WhenO 11 the two subsystemé are entangled

| This explanation is simplistic; entanglement also occurssfor 1t



Entanglement | |

(a) Logarithmic negativity,0 (b) Mechanical occupation numbeftd )
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[C. Genes, A. Mari, D. Vitaind PTombesi,Adv. At. Mol. Opt. Phys$7, 33(2009)]



